2 00 3 Hechler ’ s theorem for the meager ideal
نویسنده
چکیده
We prove the following theorem: For a partially ordered set Q such that every countable subset has a strict upper bound, there is a forcing notion satisfying ccc such that, in the forcing model, there is a basis of the meager ideal of the real line which is order-isomorphic to Q with respect to set-inclusion. This is a variation of Hechler’s classical result in the theory of forcing.
منابع مشابه
2 00 3 Hechler ’ s theorem for the null ideal Masaru Kada
We prove the following theorem: For a partially ordered set Q such that every countable subset has a strict upper bound, there is a forcing notion satisfying ccc such that, in the forcing model, there is a basis of the null ideal of the real line which is order-isomorphic to Q with respect to set-inclusion. This is a variation of Hechler’s classical result in the theory of forcing, and the stat...
متن کاملN ov 2 00 2 Hechler ’ s theorem for the null ideal
We prove the following theorem: For a partially ordered set Q such that every countable subset has a strict upper bound, there is a forcing notion satisfying ccc such that, in the forcing model, there is a basis of the null ideal of the real line which is order-isomorphic to Q with respect to set-inclusion. This is a variation of Hechler’s classical result in the theory of forcing, and the stat...
متن کامل2 00 4 Hechler ’ s theorem for the null ideal
We prove the following theorem: For a partially ordered set Q such that every countable subset of Q has a strict upper bound, there is a forcing notion satisfying the countable chain condition such that, in the forcing extension, there is a basis of the null ideal of the real line which is order-isomorphic to Q with respect to set-inclusion. This is a variation of Hechler’s classical result in ...
متن کامل3 Hechler ’ s theorem for the null ideal
We prove the following theorem: For a partially ordered set Q such that every countable subset has a strict upper bound, there is a forcing notion satisfying ccc such that, in the forcing model, there is a basis of the null ideal of the real line which is order-isomorphic to Q with respect to set-inclusion. This is a variation of Hechler’s classical result in the theory of forcing, and the stat...
متن کاملHechler ’ s theorem for the meager ideal
We prove the following theorem: For a partially ordered set Q such that every countable subset has a strict upper bound, there is a forcing notion satisfying ccc such that, in the forcing model, there is a basis of the meager ideal of the real line which is order-isomorphic to Q with respect to set-inclusion. This is a variation of Hechler’s classical result in the theory of forcing.
متن کامل